An Example of Spectral Phase Transition Phenomenon in a Class of Jacobi Matrices with Periodically Modulated Weights
نویسنده
چکیده
We consider self-adjoint unbounded Jacobi matrices with diagonal qn = n and weights λn = cnn, where cn is a 2-periodical sequence of real numbers. The parameter space is decomposed into several separate regions, where the spectrum is either purely absolutely continuous or discrete. This constitutes an example of the spectral phase transition of the first order. We study the lines where the spectral phase transition occurs, obtaining the following main result: either the interval (−∞; 1 2 ) or the interval ( 1 2 ; +∞) is covered by the absolutely continuous spectrum, the remainder of the spectrum being pure point. The proof is based on finding asymptotics of generalized eigenvectors via the Birkhoff-Adams Theorem. We also consider the degenerate case, which constitutes yet another example of the spectral phase transition.
منابع مشابه
An Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme
We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...
متن کاملComparative study on solving fractional differential equations via shifted Jacobi collocation method
In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملDiscrete spectrum in a critical coupling case of Jacobi matrices with spectral phase transitions by uniform asymptotic analysis
For a two-parameter family of Jacobi matrices exhibiting first-order spectral phase transitions, we prove discreteness of the spectrum in the positive real axis when the parameters are in one of the transition boundaries. To this end we develop a method for obtaining uniform asymptotics, with respect to the spectral parameter, of the generalized eigenvectors. Our technique can be applied to a w...
متن کاملFrom random matrices to quasi-periodic Jacobi matrices via orthogonal polynomials
We present an informal review of results on asymptotics of orthogonal polynomials, stressing their spectral aspects and similarity in two cases considered. They are polynomials orthonormal on a finite union of disjoint intervals with respect to the Szegö weight and polynomials orthonormal on R with respect to varying weights and having the same union of intervals as the set of oscillations of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007